Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreCastration resistant prostate cancer (CRPC) is a lethal disease1-4. Aberrant activation of the androgen receptor (AR) becomes a central mechanism contributing to the resistance of endocrine therapies2,3. Here we demonstrate that non-coding RNAs transcribed from the AR bound-enhancers RNAs (AR-eRNAs) are upregulated in human CRPC cells in vitro, xenografts in vivo and patient tissues. Expression of a subset of genes with elevated AR-eRNAs, including TLE1 and HTR3A, is inversely correlated with biochemical recurrence-free survival of CRPC patients. We identify aan HIV-1 TAR-like (TAR-L) motif in AR-eRNAs of AR target genes including KLK3 (or PSA) and TMPRSS2. The TAR-L motif is important for these eRNAs to bind to CYCLIN T1 of the positive transcription elongation factor b (P-TEFb) complex. Knockdown of PSA eRNA diminishes RNA polymerase II (Pol II) serine-2 (Ser-2) phosphorylation at the PSA promoter. The TAR-L motif in KLK3 eRNA is crucial for effective transcription of PSA mRNA. Together, wWe demonstrate a P-TEFb activation function of eRNA and reveal aberrant eRNA expression as a functional indicator of AR abnormality in CRPC. Our results also suggest that eRNAs as amay be a potential target for CRPC therapy. SOURCE: LIGUO WANG (wang.liguo@mayo.edu) - Mayo Clinic
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team