PLX006106

GSE51684: Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for amyotrophic lateral sclerosis and frontotemporal dementia (Multiplex Analysis of PolyA-linked Sequences)

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: The purpose of this experiment is to identify a C9-ALS/FTD specific genomic profile in fibroblast lines that is distinct from sporadic ALS without C9orf72 expansion and non-neurologic control cells. The study will then evaluate the effect on this identified profile of ASO treatment targeting the sense strand RNA transcript of the C9orf72 gene.; Methods: Expression profiling was performed on RNAs from fibroblasts of four C9orf72 patients, four control individuals and four sporadic ALS patients using Multiplex Analysis of PolyA-linked Sequences method.; Results: Hierarchical clustering of expression values for all genes showed that the four C9orf72 patient lines had an expression profile distinct from control and sporadic ALS lines. Statistical comparison of expression values between the four C9orf72 lines and the four control lines revealed that 122 genes were upregulated (defined by a False Discovery Rate FDR<0.05) and 34 genes were downregulated (defined by a False Discovery Rate FDR <0.05) in C9orf72 patient fibroblasts.; Conclusions: A genome wide RNA signature can be defined in fibroblasts with C9orf72 expansion. ASO-mediated reduction of C9orf72 RNA levels in fibroblasts with the hexanucleotide expansion efficiently reduced accumulation of GGGGCC RNA foci. This did not, however, generate a reversal of the C9orf72 RNA profile. SOURCE: Gene Yeo (geneyeo@ucsd.edu) - UCSD

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team