PLX103439

GSE51124: Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter, (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlation of >0.94 and >0.80 with NanoString and ScriptSeq protocols respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively. Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transciptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed particularly well for lincRNA expression from FFPE libraries but detection of eSNV and fusion transcripts was less sensitive. SOURCE: Zhifu Sun Mayo Clinic

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team