Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreRBM10 is an RNA binding protein that was identified as a component of spliceosome complex, suggesting its potential role in splicing regulation. However, the direct experimental evidence for this function has been lacking. Here we characterized in vivo RBM10-RNA interactions and investigated the role of RBM10 in splicing regulation at the global level. We observed significant RBM10-RNA interactions in the vicinity of splice sites and identified hundreds of splicing changes following perturbation of cellular RBM10 abundance. A RNA splicing map integrating the binding pattern and splicing profiles revealed a significant correlation between RBM10-enhanced exon skipping events and its binding close to the splicing sites of both upstream and downstream introns. Furthermore, we demonstrated the splicing defects in a patient carrying a RBM10 mutation. Overall, our data provided insights into the mechanistic model of RBM10-mediated splicing regulation and established genomic resources for future studies on its function in different pathophysiological contexts. SOURCE: Andreas Gogol-Döring MDC Berlin
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team