Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreRecent studies of genome-wide chromatin interactions have revealed that the human genome is partitioned into many self-associating topological domains. The boundary sequences are enriched for binding sites of CTCF and the cohesin complex, implicating these two factors in the establishment or maintenance of topological domains. To determine the role of cohesin and CTCF in higher order chromatin architecture in human cells, we proteolytically cleaved the cohesin complex from interphase chromatin and examined changes in chromosomal organization as well as transcriptome. We observed a general loss of local chromosomal interactions upon disruption of cohesin complex, but the topological domains remain intact. However, we found that depletion of CTCF by RNA interference in these cells not only reduced intra-domain interactions but also increased inter-domain interactions. Further more, distinct groups of genes become mis-regulated upon depletion of cohesin and CTCF. Taken together, these observations suggest that CTCF and cohesin contribute in different ways to chromatin organization and gene regulation. SOURCE: Jesse,R,Dixon (j1dixon@ucsd.edu) - Ludwig Institute for Cancer Research
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team