PLX044084

GSE44267: Cohesin and CTCF Differentially Affect the Chromatin Architecture and Gene Expression in Human Cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Recent studies of genome-wide chromatin interactions have revealed that the human genome is partitioned into many self-associating topological domains. The boundary sequences are enriched for binding sites of CTCF and the cohesin complex, implicating these two factors in the establishment or maintenance of topological domains. To determine the role of cohesin and CTCF in higher order chromatin architecture in human cells, we proteolytically cleaved the cohesin complex from interphase chromatin and examined changes in chromosomal organization as well as transcriptome. We observed a general loss of local chromosomal interactions upon disruption of cohesin complex, but the topological domains remain intact. However, we found that depletion of CTCF by RNA interference in these cells not only reduced intra-domain interactions but also increased inter-domain interactions. Further more, distinct groups of genes become mis-regulated upon depletion of cohesin and CTCF. Taken together, these observations suggest that CTCF and cohesin contribute in different ways to chromatin organization and gene regulation. SOURCE: Jesse,R,Dixon (j1dixon@ucsd.edu) - Ludwig Institute for Cancer Research

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team