Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreThe nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina-associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a novel 'molecular contact memory' approach. In each interphase nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL correlates with their degree of H3K9 dimethylation in single cells, and inactivation of the H3K9 methyltransferase G9a reduces the NL contact frequencies. These results indicate that nuclear positioning and histone modification of LADs are both stochastic yet linked in single cells. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes. SOURCE: Bas van Steensel (b.v.steensel@nki.nl) - van Steensel group Netherlands Cancer Institute
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team