Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreRNA sequences are expected to be identical to their corresponding DNA sequences. Advances in technologies have enabled deep sequencing of nucleic acids that uncovered exceptions to the one-to-one relationship between DNA and RNA sequences. Previously in human cells, post-transcriptional RNA editing was the only known mechanism that changes RNA sequences from the underlying DNA sequences. Here, we sequenced nascent RNA and found all 12 types of RNA-DNA differences. Using various experimental analyses, we validated this finding. Our results showed that sequences of nascent RNAs within 40 nucleotides of the exit channel of RNA polymerase II already differ from the corresponding DNA sequences. These RNA-DNA differences are mediated by RNA processing steps closely coupled with transcription and not by known deaminase-mediated RNA editing mechanisms nor during NTP incorporation by Pol II. This finding identifies sequence substitution as part of co-transcriptional RNA processing. SOURCE: Isabel,Xiaorong,WangDr. Vivian G. Cheung Lab HHMI/University of Pennsylvania
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team