PLX138743

GSE157233: Comparative gene expression profiling in livers of A1cf-transgenic, A1cf-knockout, and wild-type mice

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Rationale: RNA binding protein Apobec1 Complementation Factor (A1CF) regulates posttranscriptional ApoB mRNA editing but the range of RNA targets and long-term impact of altered A1CF expression on liver function are unknown. Objective: We studied hepatocyte-specific A1cf transgenic (A1cf +/Tg), A1cf+/Tg Apobec1 / and A1cf / mice fed chow or high fat/high fructose diets using RNA-Seq, RNA-CLIP Seq and tissue microarrays from human hepatocellular cancer (HCC). Findings: A1cf +/Tg mice exhibited increased hepatic proliferation and steatosis, with increased lipogenic gene expression (Mogat1, Mogat2, Cidea, Cd36) associated with shifts in polysomal RNA distribution. Aged A1cf +/Tg mice developed spontaneous fibrosis, dysplasia and HCC, which was accelerated on a high fat/fructose diet and independent of Apobec1. RNA-Seq revealed increased expression of mRNAs involved in oxidative stress (Gstm3, Gpx3, Cbr3), inflammatory response (Il19, Cxcl14, Tnf, Ly6c), extracellular matrix organization (Mmp2, Col1a1, Col4a1), proliferation (Kif20a, Mcm2, Mcm4, Mcm6) with a subset of mRNAs (including Sox4, Sox9, Cdh1) identified in RNA CLIP-Seq. Increased A1CF expression in human HCC correlated with advanced fibrosis and with reduced survival in a subset with nonalcoholic fatty liver disease. Conclusions: Hepatic A1CF overexpression selectively alters polysomal distribution and mRNA expression, promoting lipogenic, proliferative and inflammatory pathways leading to HCC. SOURCE: Jesse Riordan (jesse-riordan@uiowa.edu) - University of Iowa

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team