PLX121082
GSE154428: Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimers disease
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
It was recently revealed that gut microbiota promote amyloid-beta (A) burden in mouse models of Alzheimers disease (AD). However, the underlying mechanisms when using either germ-free (GF) housing conditions or treatments with antibiotics (ABX) remained unknown. In this study, we show that GF and ABX-treated 5x familial AD (5xFAD) mice developed attenuated hippocampal A pathology and associated neuronal loss, and thereby delayed disease-related memory deficits. While Ab production remained unaffected in both GF and ABX-treated 5xFAD mice, we noticed in GF 5xFAD mice enhanced microglial A uptake at early stages of the disease compared to ABX-treated 5xFAD mice. Furthermore, RNA-sequencing of hippocampal microglia from SPF, GF and ABX-treated 5xFAD mice revealed distinct microbiota-dependent gene expression profiles associated with phagocytosis and altered microglial activation states. Taken together, we observed that constitutive or induced microbiota modulation in 5xFAD mice differentially controls microglial A clearance mechanisms preventing neurodegeneration and cognitive deficits. SOURCE: Ori Staszewski (ori.staszewski@uniklinik-freiburg.de) - University Medical Center Freiburg
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team