PLX309536

GSE151610: Epithelial membrane protein 2 (EMP2) regulates hypoxia induced angiogenesis in retinal epithelial cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Pathologic retinal neovascularization is a potentially blinding consequence seen in many common diseases including diabetic retinopathy, retinopathy of prematurity, and retinal vascular occlusive diseases, among others. The use of therapeutics targeting pro-angiogenesis factors such as vascular endothelial growth factor (VEGF) has proven to be highly effective, however considerable side effects exist and serial anti-VEGF treatment has been shown to decrease effectiveness over time. Characterization of additional regulators of neovascularization is needed to further understand neovascular disease and identify possible new therapeutic targets. This study investigates epithelial membrane protein 2 (EMP2) and its role as a possible modulator of angiogenesis in human retinal pigment epithelium (RPE) under hypoxia. EMP2 is highly expressed in human RPE and RPE cell lines. Adult retinal pigment epithelial cell line-19 (ARPE-19) cells were genetically modified to either overexpress EMP2 (OE) or knock down EMP2 (KD) and expression at the RNA and protein level was evaluated using RNA sequencing and western blot respectively. Protein expression was evaluated under both normoxic conditions and conditions of hypoxic stress with 0.5% O2. EMP2 expression was found to positively correlate with expression of the pro-angiogenesis factors hypoxia inducible factor 1-alpha (HIF-1a) and VEGF for both RNA and protein. EMP2 mediated changes in ARPE-19 cells was also found to alter the secretion of a paracrine factor(s) in conditioned media that can regulate human umbilical vein endothelial cells (HUVEC) endothelial cell migration and capillary tube formation in in vitro functional angiogenesis assays. This study identifies EMP2 as a potentially important mediator of angiogenesis in the human RPE, a tissue involved in abnormal retinal neovascularization in a number of diseases. EMP2 levels positively correlate with those of the potent pro-angiogenesis mediators HIF-1a and VEGF, however the mechanism of this relationship remains to be clarified. This study supports further investigation of EMP2 as a promising novel target for therapeutic treatment of pathologic neovascularization in the retina. SOURCE: Michel,M,SunGordon Lab UCLA

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team