PLX306571

GSE151514: Identification of 17-DMAG as a novel KDM4B inhibitor for combination therapy [RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Histone lysine demethylases (KDMs) are emerging as therapeutic targets in cancer. Development of potent KDM inhibitors may provide additional options for epigenomics-oriented therapies. Using a Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) functional demethylation assay, in combination with a high-content immunofluorescence imaging phenotypic screen, Matrix-Assisted Laser Desorption/Ionization- Fourier Transform Ion Cyclotron Resonance mass spectrometry (MALDI-FTICR MS) and Amplified Luminescent Proximity Homogeneous Assay (ALPHA), we identified geldanamycin, an inhibitor of heat shock protein 90 (Hsp90), as a novel inhibitor of JmjC-domain containing demethylases such as KDM4B. We further found that geldanamycin can destabilize the PAX3-FOXO1 fusion oncoprotein, an Hsp90 client, which is a driver of clinically unfavorable alveolar rhabdomyosarcoma (aRMS). We then hypothesized that dual inhibition of PAX3-FOXO1 and epigenetic modifiers of aRMS would have synergistic antitumor activity. We repurposed the geldanamycin analog 17-DMAG to target aRMS and found that 17-DMAG significantly delays tumor growth , extends survival in xenograft mouse models, and inhibits expression of PAX3-FOXO1 targets and multiple oncogenic pathways including MYC, E2F and NOTCH. In addition, the combination of 17-DMAG with conventional chemotherapy or the bromodomain inhibitor JQ1 significantly enhances therapeutic efficacy. In summary, we have identified geldanamycin and 17-DMAG as dual KDM/Hsp90 inhibitors and 17-DMAG is efficacious against PAX3-FOXO1-driven rhabdomyosarcoma. SOURCE: Hongjian Jin (hongjian.jin@STJUDE.ORG) - St Jude Children's Research Hospital

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team