PLX139279

GSE149662: Muscle Specific Insulin Receptor Overexpression Protects Mice from Diet-Induced Glucose Intolerance but Leads to Post-Receptor Insulin Resistance

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Skeletal muscle insulin resistance is a prominent early feature in the pathogenesis of type 2 diabetes (T2D). In attempt to overcome this defect, we generated mice overexpressing insulin receptors (IR) specifically in skeletal muscle (IRMOE). On normal chow, IRMOE mice have similar body weight as controls, but an increase in lean mass and glycolytic muscle fibers and reduced fat mass. IRMOE mice also show higher basal phosphorylation of IR, IRS-1 and Akt in muscle and improved glucose tolerance compared to controls. When challenged with high fat diet (HFD), IRMOE mice are protected from diet-induced obesity. This is associated with reduced inflammation in fat and liver, improved glucose tolerance and improved systemic insulin sensitivity. Surprisingly, however, in both chow and HFD-fed mice, insulin stimulated Akt phosphorylation is significantly reduced in muscle of IRMOE mice, indicating post-receptor insulin resistance. RNA sequencing reveals downregulation of several post-receptor signaling proteins that contribute to this resistance. Thus, enhancing early insulin signaling in muscle by overexpression of the insulin receptor protects mice from diet-induced obesity and its effects on glucose metabolism. However, chronic overstimulation of this pathway leads to post-receptor desensitization, indicating the critical balance between normal signaling and hyperstimulation of the insulin signaling pathway. SOURCE: Hui Pan (Hui.Pan@joslin.harvard.edu) - Joslin Diabetes Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team