Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreSingle cell technologies hold promise for resolving complex early developmental phenotypes. Here we define a novel Hedgehog (Hh)-Fibroblast Growth Factor (FGF) signaling axis for the formation of anterior mesoderm lineages during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populationsculminating in defects to anterior embryonic structures including the pharyngeal arches, heart, and anterior somites. Transcriptional profiling of Hh-deficient mesoderm during gastrulation revealed disruptions to both transcriptional patterning of the mesoderm and FGF signaling for mesoderm migration. Mesoderm-specific Fgf4/Fgf8 double mutants recapitulated anterior mesoderm defects and Hh-dependent GLI transcription factors modulated enhancers at FGF gene loci. Cellular migration defects during gastrulation induced by Hh pathway antagonism were mitigated by FGF4 protein. These findings implicate a multicomponent signaling hierarchy activated by Hh ligands from the embryonic node and executed by FGF signals in nascent mesoderm to control anterior mesoderm patterning. SOURCE: Sebastian Pott (spott@uchicago.edu) - University of Chicago
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team