Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreSomatic expansion of the Huntingtons disease (HD) CAG repeat drives the rate of a pathogenic process resulting in neuronal cell death. Although mechanisms of neuronal toxicity are not well delineated, transcriptional dysregulation is a likely contributor. Chromatin modifiers are implicated in both mechanisms of CAG instability and transcriptional dysregulation. Here, we tested whether histone deacetylase genes Hdac2 and Hdac3 modify molecular and cellular phenotypes in HttQ111 knock-in mice using conditional knockouts in striatal medium-spiny striatal neurons (MSNs) exhibiting extensive CAG expansion and exquisite disease vulnerability. MSN-specific Hdac2 or Hdac3 knockout attenuated CAG expansion, with the Hdac2 knockout impacting nuclear huntingtin pathology. Hdac2 knockout resulted in a substantial transcriptional response that included reversal of transcriptional dysregulation elicited by the HttQ111 allele. Our results identify novel modifiers of CAG expansion in MSNs, providing testable mechanistic hypotheses, and a potentially complex relationship between Htt and Hdac2 with implications for targeting transcriptional dysregulation in HD. SOURCE: Serkan Erdin (serdin@mgh.harvard.edu) - Talkowski Lab Massachusetts General Hospital
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team