PLX112094

GSE148075: Wild mice with different social network sizes vary in brain gene expression

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background; Appropriate social interactions influence animal fitness by impacting several processes, such as mating, territory defense, and offspring care. Many studies shedding light on the neurobiological underpinnings of social behavior have focused on nonapeptides (vasopressin, oxytocin, and homologues) and on sexual or parent-offspring interactions. Furthermore, animals have been studied under artificial laboratory conditions, where the consequences of behavioral responses may not be as critical as when expressed under natural environments, therefore obscuring certain physiological responses. We used automated recording of social interactions of wild house mice outside of the breeding season to detect individuals at both tails of a distribution of egocentric network sizes (characterized by number of different partners encountered per day). We then used RNA-seq to perform an unbiased assessment of neural differences in gene expression in the prefrontal cortex, the hippocampus and the hypothalamus between these mice with naturally occurring extreme differences in social network size.; Results ; We found that the neurogenomic pathways associated with having extreme social network sizes differed between the sexes. In females, hundreds of genes were differentially expressed between animals with small and large social network sizes, whereas in males very few were. In males, X-chromosome inactivation pathways in the prefrontal cortex were the ones that better differentiated animals with small from those with large social network sizes animals. In females, animals with small network size showed up-regulation of dopaminergic production and transport pathways in the hypothalamus. Additionally, in females, extracellular matrix deposition on hippocampal neurons was higher in individuals with small relative to large social network size.; Conclusions ; Studying neural substrates of natural variation in social behavior in traditional model organisms in their habitat can open new targets of research for understanding variation in social behavior in other taxa. SOURCE: Patricia,C,Lopes (lopes@chapman.edu) - Chapman University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team