PLX082875

GSE145792: Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II and Pol III [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Genome binding/occupancy profiling by high throughput sequencing Expression profiling by high throughput sequencing | Other; We analyzed Hi-C, HiChIP, Ocean-C, RNA-seq, ATAC-seq, ChIP-seq and 4C-seq data to provide the most comprehensive evidence to date to demonstrate that transcription plays a marginal role in organizing the 3D genome in mammalian cells: 1) degraded Pol I, Pol II and Pol III proteins in mESCs, and showed their loss results in little or no changes of global 3D chromatin structures for the first time; 2) selected RNA polymerases high abundance binding sites-associated interactions and found they still persist after the degradation; 3) generated higher resolution chromatin interaction maps and revealed that transcription inhibition mildly alters small loop domains; 4) identified Pol II bound but CTCF and Cohesin unbound loops and disclosed that they are largely resistant to transcription inhibition; Interestingly, we found that Pol II depletion for a longer time significantly affects the chromatin accessibility and Cohesin occupancy, suggesting RNA polymerases are capable of affecting the 3D genome indirectly. So, the direct and indirect effects of transcription inhibition explain the previous confusing effects on the 3D genome. We conclude that Pol I, Pol II, and Pol III loss only mildly alter chromatin interactions in mammalian cells, suggesting the 3D chromatin structures are preestablished and relatively stable. SOURCE: Xiong Ji (xiongji@pku.edu.cn) - Jilab Peking University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team