PLX097681

GSE145242: Erythrophagocytosis drives anti-inflammatory programming of liver macrophages (Bulk RNA seq SPTA CD40 mac)

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Under conditions of erythrolytic stress, which accompanies many disease states, macrophages play key roles in phagocytosing damaged RBCs and preventing the toxic effects of cell-free hemoglobin and heme to maintain homeostasis. Using a genetic mouse model of spherocytosis and single-cell RNA sequencing, we show that erythrolytic stress promotes expansion of a specific macrophage population in the liver (which we named erythrophagocytes) expressing high levels of Marco and Hmox1 and low levels of MHC class II related genes with an anti-inflammatory gene expression signature. We confirmed the strong anti-inflammatory function of erythrophagocytes in two models of sterile inflammatory liver disease: anti-CD40 antibody-induced systemic inflammation syndrome with necrotizing hepatitis and diet-induced nonalcoholic fatty liver disease (NAFLD). The unique anti-inflammatory phenotype and function of erythrophagocytes was reproduced in vitro by heme-exposure of mouse macrophages, yielding a transcriptional profile that segregated heme-polarized from classical M1- and M2-polarized cells. The phenotype of anti-inflammatory erythrophagocytes coincided with NFE2L2/NRF2 driven gene expression and was abolished in Nfe2l2/Nrf2-deficient macrophages. Our findings point to a novel pathway that regulates macrophage functions to link RBC homeostasis and heme metabolism with innate immunity. SOURCE: Marc Pfefferle (marc.pfefferle@uzh.ch) - University hospital Zürich (USZ)

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team