PLX300916

GSE139924: LSD1 mediates AKT activity in PIK3CA mutant colorectal cancer [RNA-Seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Activation of the epithelial-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers (CRCs) contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with CRC contributing to increased invasion and metastasis. Little is known about how oncogenic signaling pathways such as PI3K/AKT synergize with chromatin modifiers to activate the EMT program. Lysine Specific Demethylase 1 (LSD1) is a chromatin-modifying enzyme that is overexpressed in colorectal cancer (CRC) and enhances cell migration. In this study we determine that LSD1 expression is significantly elevated in CRC patients with mutation of the catalytic subunit of PI3K, PIK3CA, compared to CRC patients with WT PIK3CA. LSD1 enhances activation of the AKT kinase in CRC cells through a non-catalytic mechanism, acting as a scaffolding protein for the transcription-repressing CoREST complex. Additionally, growth of PIK3CA mutant CRC cells is uniquely dependent on LSD1. Knockdown or CRISPR knockout of LSD1 blocks AKT-mediated stabilization of the EMT-promoting transcription factor Snail and effectively blocks AKT-mediated EMT and migration. Overall we uniquely demonstrate that LSD1 mediates AKT activation in response to growth factors and oxidative stress, and LSD1-regulated AKT activity promotes EMT-like characteristics in a subset of PIK3CA mutant cells. SOURCE: Heather,M,O'Hagan (hmohagan@indiana.edu) - Indiana University School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team