PLX198644

GSE131576: Integrated analysis of H2A.Z isoforms reveals a complex interplay in gene regulation [WI38_siPHF14-siSIRT1 RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The H2A.Z histone variant plays major roles in the control of gene expression. In human, H2A.Z is encoded by two genes expressing two isoforms, H2A.Z.1 and H2A.Z.2 differing by three amino acids. Here, we undertook an integrated analysis of the independent and interdependent functions of these two isoforms in gene expression using endogenously-tagged isoform. RNA-Seq analysis following depletion of either isoform or both together in untransformed cells showed that they can regulate both distinct and overlapping sets of genes positively or negatively in a context-dependent manner. Our data revealed that the two isoforms have similar or antagonistic function depending on the gene. H2A.Z.1 and H2A.Z.2 can replace each other at Transcription Start Sites, providing a molecular explanation for this interplay. Mass spectrometry analysis showed that H2A.Z.1 and H2A.Z.2 have specific interactors, PHF14 and associated proteins for H2A.Z.1 and the histone deacetylase SIRT1 for H2A.Z.2. Moreover, we show that PHF14 and SIRT1 mediate the functional antagonism between H2A.Z.1 and H2A.Z.2. In conclusion, we propose a model in which the balance between H2A.Z.1 and H2A.Z.2 at promoters is critically important to regulate specific gene expression and depends on the recruitment of specific proteins. Our work thus provides an additional layer of complexity to the control of gene expression by histone variants. SOURCE: Estelle Nicolas (estelle.nicolas@univ-tlse3.fr) - LBCMCP UMR5088, CNRS - Université Paul Sabatier

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team