Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreDerivation of human skeletal muscle in vitro with human pluripotent stem cells (hPSCs) opens new avenues for deciphering essential, but poorly understood aspects of transcriptional regulation in myogenic specification and relevance to rare genetic diseases. We characterized the transcriptional landscape of distinct human myogenic stages, including OCT4::EGFP+ PSCs, MSGN1::EGFP+ presomites, PAX7::EGFP+ skeletal muscle progenitors, MYOG::EGFP+ myoblasts, and multinucleated myotubes. We defined signature gene expression profiles from each population with unbiased clustering analysis, which provided unique insights into the transcriptional dynamics of human myogenesis from undifferentiated hPSCs to fully differentiated myotubes. Using knock-out strategy, we identified TWIST1 as a critical factor in maintenance of human PAX7::EGFP+ putative skeletal muscle progenitors, providing an explanation for the musculoskeletal symptoms of a rare genetic disease, Saethre-Chotzen syndrome. We have established a foundation for future studies to identify regulators of human myogenic ontogeny. SOURCE: Gabsang Lee (glee48@exchange.johnshopkins.edu) - Institute for Cell Engineering, Johns Hopkins University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team