Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MorePancreatic cancer is an aggressive disease with a poor prognosis for which current standard chemotherapeutic treatment options offer little survival benefit. In recent years, receptor tyrosine kinases (RTK)s have garnered interest as therapeutic targets to augment or replace standard chemotherapeutic therapies because of their high expression levels in various cancers and their ability to promote cell growth, migration, and survival. Met and Ron, which are homologous RTKs activated by the ligands hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), respectively, are over-activated in many of the least treatable cancers. In pancreatic adenocarcinoma, Met expression is linked to poor patient survival and Ron expression is generally higher in tumor samples relative to normal tissue, although its prognostic significance in pancreatic cancer remains unclear. Despite the structural homology between Met and Ron, studies that have directly compared the functional outcomes of these systems in any context are limited. To address this, we sought to determine if the HGF/Met and MSP/Ron systems produce overlapping or divergent contributions towards a malignant phenotype by performing a characterization of MSP and HGF driven signaling, behavioral, and transcriptomic responses in pancreatic cancer cells in vitro. We found HGF and MSP both encouraged cell migration and activated the MAPK/Erk pathway both at the transcript and protein level. HGF uniquely increased proliferation in addition to regulating a wider variety of transcripts compared to MSP. Although HGF and MSP produced a differing breadth of responses, overlapping pro-cancer signaling, behavioral, and transcriptional effects suggest dual inhibition of the MSP/Ron and HGF/Met systems in pancreatic cancer may provide a more complete anti-cancer effect compared to individually targeting either system. SOURCE: Brett Vanderwerff (brett.vanderwerff@gmail.com) - Washington State University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team