PLX245247

GSE123892: Stranded RNA-seq were performed on total RNA following ribosomal RNAs depletion (Ribo-zero removal kit, illumina) for 3 brain , 8 IDHwt and 5 IDHmut glioma samples.

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Aberrant DNA methylation is a well-defined feature of cancer cells that is commonly associated to transcriptional alteration. Nonetheless, a primary role of this defect in genome-wide cancer-associated gene misregulation is still being questioned. Here, we used adult glioma, a widespread type of brain tumor, to evaluate the relative contribution of DNA methylation-dependent and -independent mechanisms on transcriptional alteration at CpG-island/promoter-associated genes in cancer cells. By extensive molecular analyses conducted in both IDH wild-type (IDHwt) and IDH mutated (IDHmut) samples, we show that DNA hypermethylation affects only a minority of genes that show a loss or a gain of expression. In IDHwt samples, for instance, more than 75% of aberrantly repressed genes do not display DNA methylation defect at their CpG-island promoter. Rather, an alteration in the H3K27me3 signature is the predominant molecular defect at misregulated genes. We also observed that a bivalent chromatin signature in stem cell might not only predispose genes to hypermethylation, as widely documented, but more generally to all type of transcriptional alterations. In addition, we evidenced that transcriptional strength in healthy brain influences the choice between DNA methylation- or H3K27me3- associated silencing pathway at repressed genes in glioma. Combined our study supports a model whereby the altered developmental control of H3K27me3 dynamics, and more specifically defects in the interplay between polycomb protein complexes and brain-specific transcriptional machinery, is the main cause of transcriptional alteration in glioma cells. Together our study provides a comprehensive and revisited picture of epigenetic gene deregulations in cancer. Our observations are also of importance for the design of drugs that aims to target cancer epigenetic defects. SOURCE: franck court GReD CNRS

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team