PLX159464

GSE113698: Precise and Predictable CRISPR Chromosomal Rearrangement Editing Reveals Principles of Cas9-mediated Nucleotide Insertion

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Chromosomal rearrangements including large DNA-fragment inversions, deletions, and duplications by Cas9 with paired sgRNAs are important to investigate structural genome variations and developmental gene regulation, but little is known about the underlying mechanism. Here we report that disrupting CtIP or FANCD2, which is thought to function in NHEJ, enhances precise DNA-fragment deletion. In addition, by analyzing the inserted nucleotides at the junctions of DNA-fragment deletions, inversions, duplications, and characterizing the cleaved products, we find that Cas9 endonucleolytically cleaves the noncomplementary strand with a flexible scissile profile upstream of -3 position of the PAM site in vivo and in vitro, generating overhanged DSB ends. Moreover, we find that engineered Cas9 nucleases have distinct cleavage profiles. Finally, Cas9-mediated nucleotide insertions are nonrandom and are equal to the combined sequences upstream of both PAM sites with predicted frequencies. Thus, precise and predictable DNA-fragment editing could be achieved by perturbing DNA repair genes and using appropriate PAM configurations. These findings have important implications regarding 3D chromatin folding and enhancer insulation during gene regulation. SOURCE: Jia ShouQiang wu Shanghai Jiao Tong University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team