PLX133505

GSE113113: Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cutaneous T-cell lymphoma (CTCL) develops from clonally expanded CD4+ T cells in a background of chronic inflammation. Dendritic cells (DCs) are potent T-cell stimulators; yet despite DCs extensive presence in skin, cutaneous T cells in CTCL do not respond with effective anti-tumor immunity. We evaluated primary T-cell and DC migrs from epidermal and dermal explant cultures of skin biopsies from CTCL patients (n = 37) and healthy donors (n = 5). Compared with healthy skin, CD4+ CTCL populations contained more T cells expressing PD-1, CTLA-4, and LAG-3; and CD8+ CTCL populations comprised more T cells expressing CTLA-4 and LAG-3. CTCL populations also contained more T cells expressing the inducible T-cell costimulator (ICOS), a marker of T-cell activation. DC migrs from healthy or CTCL skin biopsies expressed PD-L1, indicating that maturation during migration resulted in PD-L1 expression irrespective of disease. Most T cells did not express PD-L1. Using skin samples from 49 additional CTCL patients for an unsupervised analysis of genome-wide mRNA expression profiles corroborated that advanced T3/T4 stage samples expressed higher levels of checkpoint inhibition genes compared with T1/T2 stage patients or healthy controls. Exhaustion of activated T cells is therefore a hallmark of both CD4+ and CD8+ T cells directly isolated from the lesional skin of patients with CTCL, with a continuum of increasing expression in more advanced stages of disease. These results justify identification of antigens driving T-cell exhaustion and the evaluation of immune checkpoint inhibition to reverse T-cell exhaustion earlier in the treatment of CTCL. SOURCE: Xiwei Wu (xwu@coh.org) - City of Hope National Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team