PLX006290

GSE112589: XBP1s Activation Globally Remodels N-Glycan Structure Distribution Patterns

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The unfolded protein response (UPR), as its name implies, safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated, XBP1s-mediated transcriptional response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s transcriptional output for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional consequence of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. XBP1s activity decreases sialylation of tri- and tetra-antennary N-glycans in the HEK293 membrane proteome and secretome, while substantially increasing the population of high mannose N-glycans only in the secretome. Related, but distinctive, signatures in the HEK293 N-glycome are observed when the entire UPR is activated in a stress-dependent manner using thapsigargin. In HeLa cells, stress-independent XBP1s activation increases the population of cell surface high mannose N-glycans and tetra-antennary N-glycans. mRNA profiling experiments suggest that the XBP1s-mediated remodeling of the N-glycome may re-flect a coordinated consequence of transcriptional resculpting of the N-glycan maturation pathway by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s is a master regulator of N-glycan maturation. Moreover, because the sugars on cell surface proteins or on those proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling pathways into al-tered interactions with the extracellular environment. SOURCE: Charles,Arthur,Whittaker (charliew@mit.edu) - Koch Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team