PLX202401

GSE112508: Optical stimulation of the FGF signaling pathway is sufficient to maintain human pluripotent stem cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Stem cell fate is largely determined by a cell-signaling network and can be controlled by the supplementation of exogenous recombinant proteins; this, however, may cause heterogeneous and unsynchronized signaling due to the uneven distribution of recombinant proteins. Such issues are closely associated with the spontaneous differentiation of human pluripotent stem cells (hPSC), which lead to a continuing loss of pluripotency. We report a novel optical control system to maintain the cellular fate of hPSCs without the daily supplementation of recombinant Fibroblast Growth Factor 2 (FGF2) protein, a key molecule for their stemness. Using blue light illumination, we mimick the activation of the FGF signaling pathway in hPSCs carrying the large light-oxygen-voltage (LOV)-sensing domain, an algae-/plant-derived photo-activable protein. The optically maintained hPSCs have similar cellular and molecular profiles to those cultured with FGF2 protein and display differentiation capabilities into three germ layers. These data provide proof-of-concept that the optical control of signaling pathways can be applied to human stem cells. SOURCE: Gabsang Lee (glee48@exchange.johnshopkins.edu) - Institute for Cell Engineering, Johns Hopkins University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team