PLX182564
GSE112305: Post-transcriptional regulation of the epithelial cell response to colitis
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Aim: RNA binding proteins (RBPs) are emerging as critical regulators of gut homeostasis via post-transcriptional control of key growth and repair pathways. IMP1 (IGF2 mRNA Binding Protein 1) is ubiquitously expressed during embryonic development and Imp1 hypomorphic mice exhibit severe gut growth defects. In the present study, we investigated the mechanistic contribution of intestinal epithelial IMP1 to gut homeostasis and response to injury.; Method: We evaluated IMP1 expression in patients with Crohns disease followed by unbiased ribosome profiling in IMP1 knockout cells. Concurrently, we measured differences in histology and cytokine expression in mice with intestinal epithelial-specific Imp1 deletion (Imp1IEC) following dextran sodium sulfate (DSS)- colitis. Based on ribosome profiling analysis, we evaluated changes in autophagy in Imp1IEC mice as well as in silico and in vitro approaches to evaluate direct protein:RNA interactions. Finally, we analyzed the consequence of genetic deletion of Atg7 in Imp1IEC mice using colitis and irradiation models.; Results: IMP1 was robustly upregulated in Crohns disease patients and Imp1 loss lessened DSS-colitis severity. Unbiased ribosome-profiling revealed that IMP1 may coordinate translation of multiple pathways important for intestinal homeostasis, including cell cycle and autophagy, which we verified by Western blotting. Mechanistically, we observed evidence for increased autophagy flux in Imp1IEC mice, reinforced through in silico and biochemical analyses revealing direct binding of IMP1 to autophagy transcripts. Finally, we found genetic deletion of Atg7 reversed the phenotype observed in DSS- or irradiation-challenged Imp1IEC mice.; Conclusions: IMP1 acts as a post-transcriptional regulator of gut epithelial repair, in part through modulation of autophagy. This study highlights the need for examining post-transcriptional regulation as a critical mechanism in inflammatory bowel disease. SOURCE: Premal Shah (premal.shah@rutgers.edu) - Shah Lab Rutgers University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team