PLX102181

GSE111819: Reactivation of Human Herpesvirus 6 (HHV-6) in Diverticulitis

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Diverticular disease is a significant healthcare burden in the United States. Younger diverticulitis patients are at increased risk for recurrence. How the molecular pathophysiology differs from those that develop disease at an older age is not understood. We aimed to profile the colonic transcriptome from younger versus older diverticulitis patients to identify differential biological pathways contributing to disease.; ; Methods: We performed RNA-seq on full-thickness sigmoid colon tissue obtained at the time of surgery on diverticulitis patients (n=26) diagnosed at a younger age (<42 years old) or at an older age (>65 years old). Viral reads were identified from the RNA-seq dataset and associated with clinical metadata and the host transcriptome. HHV-6 positivity was evaluated in diverticulitis patients by PCR and immunofluorescence. Patient sera was profiled for HHV-6 using qPCR and ELISA to detect anti-HHV-6 antibodies.; ; Results: Using RNA-seq, diverticulitis patients were profiled for differential expression associated with age of diagnosis. A subset of younger diverticulitis patients (diverticulitis colonic transcriptome-viral signature (DCT-VS)) demonstrated increased expression of anti-viral response genes. We identified viral transcripts in the RNA-seq dataset and found HHV-6 transcripts negatively correlated with DCT-VS. Younger patients more frequently displayed evidence of HHV-6 infection through DNA analysis and immunofluorescence of colonic tissue. During acute disease, HHV-6 DNA was detected in the serum but was absent during disease quiescence.; ; Conclusions: Patients diagnosed with diverticulitis at a younger age demonstrate reactivation of HHV-6 in the sigmoid colon that remains persistent. Future studies to assess the role of pathogenicity and the use of anti-virals for acute uncomplicated diverticulitis should be considered. SOURCE: Yuka Imamura Kawasawa (yimamura@hmc.psu.edu) - Penn State University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team