Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreFunctional maintenance of terminally differentiated cells outside the in vivo microenvironment has proved challenging. Current strategies that manipulate cell-cell or cell-matrix connections are difficult to constitute complex regulatory networks for cell function maintenance. Small molecules are easily combined for flexible spatiotemporal modulations, theoretically favorable for synergetic regulation of cell-innate signaling pathways to maintain cell function in vitro. Here, we developed small-molecule cocktails enabling robust maintenance of primary human hepatocytes (PHHs) longer than four weeks, with gene expression profiles, resembling those of freshly isolated PHHs; and prolong-cultured PHHs, for the first time, could maintain drug-metabolizing activities of enzymes accounting for over 80% of drug-oxidation and support hepatitis B virus infection in vitro for over one month. Importantly, this cocktail also promotes functional maturation of human pluripotent stem cell-derived hepatocytes. Our study demonstrates that this chemical approach effectively maintains terminally differentiated hepatocytes in vitro, which could be extended to various cell types. SOURCE: meng,gao,fan (meng_gaofan@126.com) - peking university
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team