PLX117374

GSE107273: Role of CD133 molecule in WNT response and renal repair

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Renal repair after injury is dependent on clonal expansion of proliferation competent cells. In the human kidney, the expression of CD133+ characterizes a population of resident scattered cells with resistance to damage and ability to proliferate. However, the biological function of the CD133 molecule is unknown. We found by RNA sequencing that cells undergoing cisplatin damage lost the CD133 signature and acquired metanephric mesenchymal and regenerative genes such as SNAIL1, KLF4, SOX9 and WNT3. CD133 was reacquired in the recovery phase. Lack of CD133 was specifically correlated with deregulation of the Wnt signalling and E-cadherin pathway and, functionally, limited cell proliferation after injury. By immunoprecipitation, CD133 appeared to form a complex with E-cadherin and -catenin. In parallel, CD133-Kd cells showed lower -catenin levels in basal condition and after Wnt pathway activation and reduced TCF/LEF promoter activation in respect to CD133+ cells. Finally, the lack of CD133 impaired generation of nephrospheres while favored senescence. These data indicate that CD133 may act as a permissive factor for beta-catenin signalling, preventing its degradation in the cytoplasm. Therefore, CD133 itself appears to play a functional role in renal tubular repair trough maintenance of proliferative response and control of senescence. SOURCE: Danny Incarnato (danny.incarnato@hugef-torino.org) - HuGeF

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team