PLX221217

GSE107163: snRNAs as regulators of alternative splicing

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

In this study we investigated snRNA-mediated modulation of pre-mRNA splicing across the human transcriptome. We first quantified the relative abundance of snRNAs across a comprehensive range of healthy adult and fetal tissues, revealing a surprising variation in the relative snRNA levels both inter- and intra-tissue. To study the role of snRNAs in cancer-relevant splicing, we used breast cancer as a model, since it exhibits a high rate of aberrant splicing48, but a low frequency of mutations in the splicing machinery52. We observed fluctuations in snRNA adundance across the majority of patients, across all breast cancer subtypes. To investigate the impact of snRNA levels using a controlled system, we knocked down snRNAs in vitro, to analyze splicing both transcriptome-wide and at the level of individual exons and introns. Depletion of each specific snRNA resulted in differential splicing across more than a thousand exon junctions within mRNA transcripts. Knock-down of U1 and U2 levels was primarily associated with changes in exon inclusion rates, whereas U4 and U6 depletion predominantly caused incomplete intron removal and a resulting retention of introns in the mature mRNA. Rather than being driven by a single factor, the observed splicing changes were associated with multiple other splicing-relevant features and mechanisms, including mRNA transcription, intron size, and nucleotide composition. The snRNA-mediated changes to the splicing program were enriched within genes encoding components of core cellular pathways and processes, including multiple aspects of RNA and protein metabolism, and thereby have the potential to impact cell growth and identity. The exons and introns that were sensitive to snRNA levels displayed a high variability in splicing in vivo across primary breast cancer samples, indicating that snRNA dysregulation may contribute to aberrant splicing in cancer. We suggest that the cellular composition of snRNAs constitutes a previously unrecognized layer of splicing regulation within the cell, and that variations or disruptions in the relative abundance of the snRNAs can affect the transcriptome of both healthy and malignant cells. SOURCE: Heidi DvingeDvinge UW-Madison

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team