PLX310650

GSE106589: Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with signatures from post mortem adult brains

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Whereas highly penetrant variants have proven well-suited to human induced pluripotent stem cell (hiPSC)-based models, the power of hiPSC-based studies to resolve the much smaller effects of common variants within the size of cohorts that can be realistically assembled remains uncertain. In developing a large case/control schizophrenia (SZ) hiPSC-derived cohort of neural progenitor cells and neurons, we identified and accounted for a variety of technical and biological sources of variation. Reducing the stochastic effects of the differentiation process by correcting for cell type composition boosted the SZ signal in hiPSC-based models and increased the concordance with post mortem datasets. Because this concordance was strongest in hiPSC-neurons, it suggests that this cell type may better model genetic risk for SZ. We predict a growing convergence between hiPSC and post mortem studies as both approaches expand to larger cohort sizes. For studies of complex genetic disorders, to maximize the power of hiPSC cohorts currently feasible, in most cases and whenever possible, we recommend expanding the number of individuals even at the expense of the number of replicate hiPSC clones. SOURCE: Gabriel,E,Hofman (gabriel.hoffman@mssm.edu) - Icahn School of Medicine at Mount Sinai

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team