PLX101456

GSE104193: Hypoxia-mediated translational activation of ITGB3 in breast cancer cells enhances TGF- signalling and malignant features in vitro and in vivo

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

We performed a polysomal RNA-Seq screen in non-malignant breast epithelial (MCF10A) and TNBC (MDA-MB-231) cells exposed to normoxic or hypoxic conditions and/or treated with an mTOR pathway inhibitor. Analysis of both the transcriptome and the translatome identified mRNA transcripts translationally activated or repressed by hypoxia in an mTOR-dependent or -independent manner. The mRNA populations of each sample were converted to cDNA libraries using the TruSeq protocol and then sequenced using a HiSeq 2000 machine. Paired-end reads were mapped against the reference human genome (GRCh38) with STAR v2.5.1b (ENCODE parameters for long RNA) and GENCODE v24 annotation. Gene quantification was performed using RSEM v1.2.28 with default parameters. Only protein-coding genes were included in the analysis. Normalization of the count matrix was performed with the TMM method of the edgeR R package. Polysomal RNA (P) and RNA total (T) fold changes across conditions were calculated with edgeR. Significant genes (FDR < 5% for MCF10A cells and FDR < 10% for MDA-MB-231 cells) in polysomes were selected for translational efficiency calculation (log2FC RNA polysomes/log2FC RNA total). Genes with a z-score > 1.5 were considered to have an increased translational efficiency and genes with a z-score < 1.5 were considered to have a decreased translational efficiency. GO enrichment analysis of significant genes was performed with the DAVID database. SOURCE: Marta Sese (marta.sese@vhir.org) - 204 Vall Hebron Institute of Research (VHIR)

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team