PLX123630

GSE103350: Mechanisms of tolerance and resistance to EGFR inhibition in lung cancer [RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: Multiple mechanims have been proposed that lead to reduced effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer and yet resistance to osimertinib and gefitinib still remains a challenge in the clinic. The goals of this study are to identify key genes contributing to tolerance and resistance to EGFR inhibition.; Methods: mRNA profiles of gefitinib and osimertinib tolerant cells in PC9 and HCC827 cells were generated by deep sequencing using Illumina. In addition, mRNA profiles of cells (AALE, PC9 and HCC827) overexpressing with miR-147b or miR-21 and mRNA profiles of cells (H1975 and PC9ER) with miR-147b and miR-21 knocking down were generated by deep sequencing. The mappable reads were aligned to the human transcripts using Bowtie2 and gene abundance was estimated using RSEM.; Results: Upregulation of miR-147b and miR-21 expression is related to tolerance and resistance to gefitinib and osimertinib in lung cancer. The signaling pathways of transcripts by knocking down miR-147b or miR-21 in resistant cells (H1975 and PC9ER) and by overexpressing miR-147b or miR-21 in both sensistive cells (HCC827 and PC9) and immortalized lung epithelial cells (AALE) are consistent with the key signaling pathways shown in tolerant cells to gefitinib and osimertinib in HCC827 and PC9 cells (HCC827GTR/OTR vs HCC827 and PC9GTR/OTR vs PC9).; Conclusions: Our work identifies key signaling pathways that mediate EGFR-TKI tolerance and resistance in lung cancer. Our study provides potential targets to improve the efficacy of EGFR-TKIs therapy in cancer pagtients. SOURCE: Wen Cai Zhang (zhangwc1@gmail.com) - Frank J. Slack Beth Israel Deaconess Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team