Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAcute lymphoblastic leukemia (ALL) is associated with significant morbidity and mortality necessitating further improvements in diagnosis and therapy. Targeted therapies directed against epigenetic regulators, which are frequently mutated or misregulated in acute leukemia, are emerging as candidate approaches in preclinical studies and early trials. However, the epigenetic factors involved in most ALLs are not well defined or functionally characterized. In this study, we demonstrate an oncogenic role for the protein lysine methyltransferase SETDB2 in leukemia pathogenesis. It is over-expressed in a wide spectrum of leukemias, required for their maintenance in vitro and in vivo, and its elevated expression correlates with a poor prognosis in clinical cohorts. In a subset of ALL with the preBCR+ phenotype, SETDB2 expression is maintained as a direct target gene of the chimeric transcription factor E2A-PBX1. In this subset, SETDB2 epigenetically suppresses expression of the cell cycle inhibitor CDKN2C through histone H3K9 tri-methylation thus establishing a novel oncogenic pathway subordinate to E2A-PBX1 that silences a major tumor suppressor in ALL. In contrast, SETDB2 was relatively dispensable for normal hematopoietic stem and progenitor cell proliferation. In addition to targeting SETDB2 alone, its knockdown significantly enhanced sensitivity to kinase and epigenetic inhibitors suggesting a potential approach to future combination treatments. Our studies define an epigenetic role for SETDB2 in leukemia pathogenesis, and provide a mechanistic rationale for targeting SETDB2 therapeutically in a subset of leukemia. SOURCE: Stephen HK WONG (honkit@stanford.edu) - Dr. Michael Cleary Stanford University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team