PLX215268

GSE102395: Lack of Repressive Capacity of Human Promoter DNA Methylation identified through Genome-Wide Epigenomic Manipulation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

It is widely assumed that the addition of DNA methylation at gene promoters silences gene transcription. However, this conclusion is largely drawn from the observation that promoter DNA methylation inversely correlates with gene expression. The effect of forced DNA methylation on endogenous promoters has yet to be comprehensively assessed. Here, we conducted artificial methylation of thousands of human promoters in human cells using an artificial zinc finger-DNMT3A fusion protein, enabling assessment of the effect of forced DNA methylation upon transcription and histone modifications, and the durability of DNA methylation after the removal of the fusion protein. We find that DNA methylation is insufficient to transcriptionally repress most promoters. Furthermore, DNA methylation deposited at promoter regions associated with H3K4me3 is rapidly erased after removal of the zinc finger-DNMT3A fusion protein. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3. These findings suggest that promoter DNA methylation is not generally sufficient for transcriptional inactivation suggesting important implications for the emerging field of epigenome engineering. SOURCE: Ethan,Edward,Ford (eford.dna@gmail.com) - Ryan Lister University of Western Australia

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team