PLX308760

GSE101571: Analysis of chromatin landscapes in early human development reveals epigenetic transition during ZGA

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Upon fertilization, drastic chromatin reorganization occurs during human preimplantation development. However, the global chromatin landscape and its molecular dynamics in this period remain largely unexplored. Deciphering such process is crucial for understanding both early human development and in vitro fertilization. Here, we investigated genome-wide chromatin accessibility in human preimplantation embryos by employing an improved ATAC-seq that uses as few as 20 cells. We found widespread accessible chromatin in early human embryos that overlaps extensively with putative cis-regulatory sequences and transposable elements. Integrative analyses showed both conservation and divergence in regulatory circuitry between human and mouse early development, and between nave human pluripotency in vivo and human embryonic stem cells. Surprisingly, we also found widespread open chromatin at the 2-cell stage despite its minimal transcription activities. Such accessible chromatin loci are readily found at CpG-rich promoters. Unexpectedly, many others are located in distal regions enriched for transcription factor binding sites and overlap with partially methylated domains (PMDs) in human oocytes. A large portion of these regions then rapidly become inaccessible upon zygotic genome activation (ZGA). Importantly, such drastic transition of chromatin accessibility during ZGA is well conserved in mouse embryos. Furthermore, it strongly correlates with the reprogramming of non-canonical H3K4me3 (ncH3K4me3), a form of histone mark that is uniquely present in oocytes and pre-ZGA embryos and contributes to genome silencing. Finally, both the reprogramming of chromatin accessibility and ncH3K4me3 during ZGA is completely blocked upon transcription inhibition, indicating a critical role of zygotic transcription in shaping early epigenomes. Together, these data revealed conserved chromatin state transition during ZGA in human and mouse early development. SOURCE: Wei Xie (xiewei121@tsinghua.edu.cn) - Tsinghua University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team