Pluto Biosciences, Inc

GSE80437: RNA-sequencing of mouse knockout models for Cnp, Plp1, and Ugt8 in the frontal cortex and cerebellum

Bulk RNA sequencing

Oligodendrocytes (OLs) and myelin are critical for normal brain function and they have been implicated in neurodegeneration. Human neuroimaging studies have demonstrated that alterations in axons and myelin occur early in Alzheimers Disease (AD) course. However, the molecular mechanism underlying the role of OLs in AD remains largely unknown. In this study, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic, and proteomic data in human AD postmortem brain samples. These robust OL networks were highly enriched for genes associated with AD risk variants, including BIN1. We corroborated the structure of the AD OL coexpression and gene-gene interaction networks through ablation of genes identified as key drivers of the networks, including UGT8, CNP, MYRF, PLP1, NPC1, and NDGR1. Perturbations of these key drivers not only caused dysregulation in their associated network neighborhoods, but also mimicked pathways of gene expression dysregulation seen in human AD postmortem brain samples. In particular, the OL subnetwork controlled by the AD risk gene PSEN1 was strongly dysregulated in AD, suggesting a potential role of PSEN1 in disrupting the myelination pathway towards the onset of AD. In summary, this study built and systematically validated the first comprehensive molecular blueprint of OL dysregulation in AD, and identified key OL- and myelination-related genes and networks as potential candidate targets for the future development of AD therapies. SOURCE: Yongzhong Zhao (mbe.evolution@gmail.com) - Mount Sinai Medical Center

View this experiment on Pluto Biosciences, Inc