Pluto Bioinformatics

GSE155343: Co-cultivation of colorectal cancer cells and human skin fibroblasts in 3D collagen gel and comparison of co-cultivated fibroblasts with CAFs

Bulk RNA sequencing

Despite the growing recognition of the role of the stroma in cancer growth, invasive behavior and metastasis, the exact mechanisms of its participation remain unclear. We have explored the relationships between the epithelial/mesenchymal (E/M) state of colorectal cancer cells, their ability to activate fibroblasts, and the expression of collagen related genes. To this end, we studied (i) co-cultures of colorectal cancer cells with different hybrid E/M states and normal fibroblasts in a collagen matrix and (ii) patient-derived cancer-associated fibroblasts (CAFs). Using RNA-sequencing, we found that the different cancer cells can activate normal fibroblasts, which could form dense collagen networks. The functional enrichment analysis of differentially expressed genes indicates more mesenchymal phenotype and greater motility of SW480 cells compared to HT29 cells. The genes related to collagen biosynthesis and catabolism tend to be more active in SW480 cells rather than HT29 cells. Moreover, LOXL2 and LOXL3 genes, which are necessary for collagen fibril organization, are SW480 specific, which may indicate greater input of this cell line in collagen remodeling compared to HT29 cells. The expression of several CAF marker genes is activated in NFs upon co-cultivation with HT29 and SW480. Interestingly, a more-epithelial cell line HT29 activates the fibroblasts to a greater extent, than does SW480. The co-cultivation of colon cancer cell lines HT29 or SW480 with NFs leads to the activation of collagen biosynthesis and collagen fibril organization genes in NFs. Our findings suggest that the normal fibroblasts, activated by cancer cells, contribute to the organization of the extracellular matrix. Therefore, targeting the ability of cancer cells to activate normal fibroblasts can be considered as a new therapeutic strategy. SOURCE: Olga Rakitina ( - Group of gene immuno-onco-therapy Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

View this experiment on Pluto Bioinformatics