Pluto Bioinformatics

GSE103604: Influenza virus infection causes global RNAPII termination defects

Bulk RNA sequencing

Viral infection perturbs host cells and can be used to uncover host regulatory mechanisms controlling both cell response and homeostasis. Here, using cell biological, biochemical and genetic tools, we reveal that influenza virus infection induces global transcriptional defects at the 3-end of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. This effect induces the biogenesis of aberrant RNAs (3-extensions and host gene fusions) which ultimately causes global transcriptional downregulation of physiological transcripts, an effect that impacts antiviral response and virulence. We show that this phenomenon occurs with multiple strains of influenza virus and it is dependent on influenza NS1 protein expression. Mechanistically, pervasive RNAPII run-through can be modulated by SUMOylation of an intrinsically disordered region (IDR) of the NS1 expressed by the 1918 pandemic influenza virus. SUMOylation increases NS1 partitioning in nuclear granules and interference with the host transcriptional apparatus which result in augmentation of termination defects and a concomitant increase in global host gene shut off. Our data identify a general strategy used by influenza virus to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins, along with human genetic variation in enzymes that metabolize post-translational modifications, can determine the outcome of an infection. We thus propose that analysis of strain-specific determinant of pathogenesis can shed light on the molecular basis of virulence. SOURCE: Harm,van,Bakel ( - Bakel Lab Mount Sinai School of Medicine

Dive into this experiment on! Explore a myriad of analyses and visualizations, from differential expression and PCA to UMAP, t-SNE, gene set enrichment, and more. Discover insights through summary reports, coverage maps, clustering, and beyond. Also access to over 14,000 published experiments. Learn more