Pluto Bioinformatics
GSE152250 (human): Metabolic dysfunction is integral to TGFb signaling and tissue fibrosis
Bulk RNA sequencing
Fibrosis, or the accumulation of extracellular matrix, causes loss of organ function and is a common feature of many chronic diseases. To interrogate core molecular pathways underlying fibrosis, we crossexamine human primary cells from various tissues treated with TGF, as well as rodent kidney and liver fibrosis models. Transcriptome analyses reveal that in addition to the known TGF signature, cluster of genes involved in fatty acid oxidation are significantly perturbed. Furthermore, defective mitochondrial oxidative phosphorylation and acylcarnitine accumulation are found in fibrotic tissues. Substantial down-regulation of the PGC1 gene is evident in both in vitro and in vivo fibrosis models, suggesting a common node of metabolic signature for all tissue fibrosis. In order to identify suppressors of fibrosis, we carry out a compound library phenotypic screen and identify AMPK and PPAR as highly enriched targets. We further show that pharmacological treatment of MK-8722 (AMPK activator) and MK-4074 (ACC inhibitor) reduce fibrosis in vivo. Altogether, our work demonstrate that metabolic defect is integral to TGF signaling and fibrosis, targeting which represents a promising therapeutic approach for multiple fibrotic diseases. SOURCE: eric muise (thomas.y.gan@merck.com) - Merck
Dive into this experiment on Pluto.bio! Explore a myriad of analyses and visualizations, from differential expression and PCA to UMAP, t-SNE, gene set enrichment, and more. Discover insights through summary reports, coverage maps, clustering, and beyond. Also access to over 14,000 published experiments. Learn more