Pluto Bioinformatics

GSE117394: Molecular analysis of the midbrain dopaminergic niche during neurogenesis

Bulk RNA sequencing

Midbrain dopaminergic (mDA) neurons degenerate in Parkinson's disease and are one of the main targets for cell replacement therapies. A comprehensive view of the signals and cell types contributing to mDA neurogenesis is not yet available. By analyzing the transcriptome of the mouse ventral midbrain at tissue and single-cell level during mDA neurogenesis we found that three recently identified radial glia types (Rgl 1-3) contribute to different key aspects of mDA neurogenesis. While Rgl3 expressed most extracellular matrix components and multiple ligands for various pathways controlling mDA neuron development, such as Wnt and Shh, Rgl1-2 expressed most receptors. Moreover, we found that specific transcription factor networks explain the transcriptome expression profiles and suggest a function for each individual radial glia type. SOURCE: Sten LinnarssonMolecular Neurobiology Karolinska Institutet

View this experiment on Pluto Bioinformatics