Pluto Bioinformatics

GSE113691: Glucocorticoid receptor dimers control intestinal STAT1-mediated IFN- and TNF-induced inflammation in mice

Bulk RNA sequencing

Tumor Necrosis Factor (TNF) is an important mediator in numerous inflammatory diseases, e.g. in inflammatory bowel diseases (IBD). In IBD, acute increases in TNF production can lead to disease flares. Glucocorticoids (GCs), which are steroids that bind and activate the glucocorticoid receptor (GR), are able to protect animals and humans against acute TNF-induced inflammatory symptoms. Mice with a poor transcriptional response of GR-dimer-dependent target genes were studied in a model of TNF-induced lethal inflammation. In contrast to the GRwt/wt mice, these GRdim/dim mice displayed a significant increase in TNF sensitivity and a lack of protection by the GC dexamethasone (DEX). Unchallenged GRdim/dim mice had a strong interferon-stimulated gene (ISG) signature, along with STAT1 upregulation and phosphorylation. This ISG signature was gut specific and, based on our studies with antibiotics, depended on the gut microbiota. GR dimers directly bound to short DNA sequences in the STAT1 promoter known as inverted repeat negative GRE (IR-nGRE) elements. Poor control of STAT1 in GRdim/dim mice led to failure to repress ISG genes resulting in excessive necroptosis induction by TNF. Our findings support a critical interplay between gut microbiota, interferons, necroptosis and GR in both the basal response to acute inflammatory challenges and in the pharmacological intervention by GCs. SOURCE: Steven Timmermans VIB-UGent

View this experiment on Pluto Bioinformatics