Pluto Bioinformatics

GSE128535: Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone

Bulk RNA sequencing

Hormone dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is often explained by a bimodal switch mod-el, where histone deacetylases (HDACs) disassociates from chromatin and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid re-ceptor regulation of transcription. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR) and present a revised model. 1) at poised constitutively TR bound enhancers, HATs occupy chromatin irrespective of thyroid hormone (T3) levels, whereas HDAC occupancy is regulated by T3, suggesting that HDACs functions as a histone acetylation rheostat. 2) at enhancers established in a T3 dependent manner, TR is recruited to chromatin together with HATs. 3) a number of enhancers are hy-peracetylated secondary to TR activation. Collectively, this demonstrates various mechanisms controlling hormone dependent transcription and adds significant details to the otherwise simple bimodal switch model. SOURCE: Lars Grøntved (larsgr@bmb.sdu.dk) - University of Southern Denmark

View this experiment on Pluto Bioinformatics