Pluto Bioinformatics

GSE99915: Single-cell mapping of lineage and identity in direct reprogramming

Bulk RNA sequencing

Direct lineage reprogramming involves the remarkable conversion of cellular identity. Single-cell technologies aid in deconstructing the considerable heterogeneity that emerges during lineage conversion. However, lineage relationships are typically lost during cell processing, complicating trajectory reconstruction. Here, we present CellTagging, a combinatorial cell indexing methodology, permitting the parallel capture of clonal history and cell identity, where sequential rounds of cell labelling enable the construction of multi-level lineage trees. CellTagging and longitudinal tracking of fibroblast to induced endoderm progenitor (iEP) reprogramming reveals two distinct trajectories: one leading to successfully reprogrammed cells, and one leading to a dead-end state, paths determined in the earliest reprogramming stages. We find that expression of a putative methyltransferase, Mettl7a1, is associated with the successful reprogramming trajectory, where its addition to the reprogramming cocktail increases the yield of iEPs. Together, these results demonstrate the utility of our lineage tracing method to reveal dynamics of direct reprogramming. SOURCE: Samantha Morris (s.morris@wustl.edu) - Washington University in St Louis

View this experiment on Pluto Bioinformatics