Pluto Bioinformatics

GSE99317: Maturing an Enteric Nervous System in Human Intestinal Organoid-derived Tissue-Engineered Small Intestine

Bulk RNA sequencing

Acquired or congenital disruption in enteric nervous system (ENS) development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC)-derived tissue-engineered small intestine (TESI) from human intestinal organoids (HIO). However, HIO-TESI fails to develop an ENS. In a previous report of combined HIO with additional human enteric neural crest cells (ENCC), an ENS was established but lacked maturity. The purpose of our study is to establish a mature ENS derived exclusively from hPSC in HIO-TESI. hPSC-derived ENCC supplementation of HIO-TESI generates ENCC-HIO-TESI with mature submucosal and myenteric ganglia, repopulates excitatory, inhibitory, and sensory neurons, and restores the neuroepithelial circuit and neuron-dependent contractility and relaxation. Our findings validate a novel approach to restoring a functional hPSC-derived ENS in ENCC-HIO-TESI and implicate their potential for the treatment of enteric neuropathies. SOURCE: Brendan,H,GrubbsGrubbs University of Southern California

View this experiment on Pluto Bioinformatics