Pluto Bioinformatics

GSE109745: Maternal Vitamin C regulates DNA demethylation and development of the mouse embryonic germline [RNA-Seq]

Bulk RNA sequencing

Maternal Vitamin C is required in vivo for proper DNA demethylation and development of fetal germ cells in a mouse model of Vitamin C deficiency. Withdrawal of Vitamin C from the maternal diet does not affect overall embryonic development but leads to defects in the fetal germline, which persist well after Vitamin C re-supply during late gestation. The transcriptome of germ cells from Vitamin C-deficient embryos is remarkably similar to that of embryos carrying a mutation in Tet1, which is responsible for DNA demethylation and activation of regulators of meiosis. In agreement with these results, Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in Vitamin C during gestation recapitulates a mutation in Tet1 and disrupts germline reprogramming and development. Our work further indicate that the embryonic germline is sensitive to perturbations of the maternal diet, providing a potential intergenerational mechanism for adjusting fecundity to environmental quality. SOURCE: Stephanie,L,Parker (stephanie.parker@ucsf.edu) - UCSF

View this experiment on Pluto Bioinformatics