Pluto Bioinformatics

GSE100820: Genetic deletion or small molecule inhibition of the arginine methyltransferase PRMT5 exhibit anti-tumoral activity in mouse models of MLL-rearranged AML

Bulk RNA sequencing

The hematological malignancies classified as Mixed Lineage leukemias (MLL) harbor fusions of the MLL1 gene to partners that are members of transcriptional elongation complexes. MLL-rearranged leukemias are associated with extremely poor prognosis and response to conventional therapies and efforts to identify molecular targets are urgently needed. Using mouse models of MLL-rearranged acute myeloid leukemia (AML), here we show that genetic inactivation or small molecule inhibition of the protein arginine methyltransferase PRMT5 exhibit anti-tumoral activity in MLL-fusion protein driven transformation. Genome wide transcriptional analysis revealed that inhibition of PRMT5 methyltransferase activity overrides the differentiation block in leukemia cells without affecting the expression of MLL-fusion direct oncogenic targets. Furthermore, we find that this differentiation block is mediated by transcriptional silencing of the cyclin-dependent kinase inhibitor p21 (CDKN1a) gene in leukemia cells. Our study provides pre-clinical rationale for targeting PRMT5 using small molecule inhibitors in the treatment of leukemias harboring MLL-rearrangements. SOURCE: Margarida Almeida SantosSantos Lab UT MD Anderson Cancer Center

View this experiment on Pluto Bioinformatics